Automatic Detection and Classification of Pole-Like Objects for Urban Cartography Using Mobile Laser Scanning Data

نویسندگان

  • C. Ordóñez Galán
  • Carlos Cabo
  • Enoc Sanz-Ablanedo
چکیده

Mobile laser scanning (MLS) is a modern and powerful technology capable of obtaining massive point clouds of objects in a short period of time. Although this technology is nowadays being widely applied in urban cartography and 3D city modelling, it has some drawbacks that need to be avoided in order to strengthen it. One of the most important shortcomings of MLS data is concerned with the fact that it provides an unstructured dataset whose processing is very time-consuming. Consequently, there is a growing interest in developing algorithms for the automatic extraction of useful information from MLS point clouds. This work is focused on establishing a methodology and developing an algorithm to detect pole-like objects and classify them into several categories using MLS datasets. The developed procedure starts with the discretization of the point cloud by means of a voxelization, in order to simplify and reduce the processing time in the segmentation process. In turn, a heuristic segmentation algorithm was developed to detect pole-like objects in the MLS point cloud. Finally, two supervised classification algorithms, linear discriminant analysis and support vector machines, were used to distinguish between the different types of poles in the point cloud. The predictors are the principal component eigenvalues obtained from the Cartesian coordinates of the laser points, the range of the Z coordinate, and some shape-related indexes. The performance of the method was tested in an urban area with 123 poles of different categories. Very encouraging results were obtained, since the accuracy rate was over 90%.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detection and Classification of Pole-like Objects from Mobile Laser Scanning Data of Urban Environments

− The Mobile Laser Scanning (MLS) system can acquire point clouds of urban environments including roads, buildings, trees, lamp posts etc. and enables effective mapping of them. With the spread of the MLS system, the demands for the management of roads and facilities using MLS point clouds have increased. Especially, pole-like objects (PLOs) such as lamp posts, utility poles, street signs etc. ...

متن کامل

Performance Analysis of a Pole and Tree Trunk Detection Method for Mobile Laser Scanning Data

Dense point clouds can be collected efficiently from large areas using mobile laser scanning (MLS) technology. Accurate MLS data can be used for detailed 3D modelling of the road surface and objects around it. The 3D models can be utilised, for example, in street planning and maintenance and noise modelling. Utility poles, traffic signs, and lamp posts can be considered an important part of roa...

متن کامل

Detection of Vertical Pole-Like Objects in a Road Environment Using Vehicle-Based Laser Scanning Data

Accurate road environment information is needed in applications such as road maintenance and virtual 3D city modelling. Vehicle-based laser scanning (VLS) can produce dense point clouds from large areas efficiently from which the road and its environment can be modelled in detail. Pole-like objects such as traffic signs, lamp posts and tree trunks are an important part of road environments. An ...

متن کامل

Automatic Detection and Classification of Pole-Like Objects in Urban Point Cloud Data Using an Anomaly Detection Algorithm

Detecting and modeling urban furniture are of particular interest for urban management and the development of autonomous driving systems. This paper presents a novel method for detecting and classifying vertical urban objects and trees from unstructured three-dimensional mobile laser scanner (MLS) or terrestrial laser scanner (TLS) point cloud data. The method includes an automatic initial segm...

متن کامل

Automatic Removal of Imperfections and Change Detection for Accurate 3D Urban Cartography by Classification and Incremental Updating

In this article, we present a new method of automatic 3D urban cartography in which different imperfections are progressively removed by incremental updating, exploiting the concept of multiple passages, using specialized functions. In the proposed method, the 3D point clouds are first classified into three main object classes: permanently static, temporarily static and mobile, using a new poin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2017